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Abstract—An analysis is performed for a fully-developed, forced convective flow through a packed-sphere
bed between concentric cylinders maintained at different temperatures. The radial variations of the porosity
and permeability in the bed near the walls, known as wall effects, are approximated by exponential
functions. The Brinkman model with variable permeability is used as the momentum equation. An
analytical solution based on the method of matched asymptotic expansions is obtained for the velocity
distribution. It is shown that velocity overshoots occur in the variable permeability bed near the inner and
outer cylinders. Because of the non-uniform porosity variation near the walls, the stagnant thermal con-
ductivity of the bed also varies in the radial direction accordingly. A mixing length theory, proposed
recently by Cheng and Vortmeyer for the transverse thermal dispersion, is employed to obtain the radial
temperature distribution and the Nusselt number of the annular bed. Computations of the heat transfer
characteristics were carried out based on three velocity models, i.e. Brinkman’s model with variable and
constant permeabilities as well as the plug flow model. It is found that with the mixing length theory,
theoretical predictions of the heat transfer characteristics based on the three velocity models are in good
agreement with the existing experimental data. The predicted temperature profiles, based on the Brinkman
model with a variable permeability, agree the best with temperature data.

INTRODUCTION

THE LUMPED parameter model has often been used
to study the performance of a wall-cooled catalytic
reactor [1]. The model assumes a plug flow with a
constant transverse thermal dispersion coefficient. To
account for the higher thermal resistance at the wall,
a derivative boundary condition with a finite wall
heat transfer coefficient is assumed. The values of the
transverse thermal dispersion coefficient and the wall
heat transfer coefficient used in the model were
obtained experimentally from forced convection in a
cylindrical packed column without chemical reac-
tions. The experimental data for the wall heat trans-
fer coefficient is found to be widely scattered [2, 3].

In comparison with experimental data, the lumped
parameter model is known to overpredict the hot
temperature spots in wall-cooled catalytic reactors [4].
Some investigators [5—~7] have attributed this dis-
crepancy to the entrance length effect of the wall heat
transfer coefficient and to the plug flow model which
does not take into consideration the non-uniform
radial velocity distribution; others question [8] the
validity that the wall heat transfer coefficient, deter-
mined for a packed bed without chemical reactions,
can be used for the modeling of the transport pro-
cess in a catalytic bed.

In a recent paper, Ahmed and Fahien [9] have
shown that by allowing the effective thermal con-
ductivity as a function of radius, a wall heat transfer
coefficient is not needed to account for the higher
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thermal resistance at the wall. Most recently, Cheng
and Vortmeyer [10] proposed a two-layer mixing
length theory for the transverse thermal dispersion
process in order to take into consideration the higher
thermal resistance at the wall of a packed bed. In their
analysis the transverse thermal dispersion coefficient
is assumed to be linearly proportional to the Péclet
number (Pe); the constants in the mixing length theory
as well as in the expression for the transverse thermal
dispersion coefficient were determined by matching
the predicted temperature profiles and the heat trans-
fer rate to those of experimental data by Schroeder et
al. [11] for forced convection of water (Pr = 7.0} in a
rectangular channel filled with glass beads at high
Reynolds numbers (based on the diameter of the glass
beads). With the introduction of the mixing length
theory, the large temperature drop near the wall as
observed in experiments can be reproduced theor-
etically; the predicted heat flux is shown to be a
function of both the Péclet number as well as the
ratio of the particle diameter to the half width of the
channel.

In this paper, an analysis is performed for a fully-
developed forced convective flow through an annular
packed bed (see Fig. 1). An analytical solution based
on the method of matched asymptotic expansions is
obtained for the velocity distribution in the variable
permeability packed bed. The two-layer mixing length
theory, proposed recently by Cheng and Vortmeyer {10}
for the transverse thermal dispersion process
is applied to obtain the radial heat transfer charac-
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A empirical constant defined in equation (2)
B constant defined in equation (53)

C, constant defined in equation (1)

c, constant in equation (3)

d, particle diameter

D constant given by equation (56d) or(57c)
D;  empirical constant defined in equation

(54)

I zeroth-order modified Bessel function of
the first kind

K*  permeability of the variable porosity
packed bed

K*  permeability at the core of the packed
bed

K dimensionless permeability

K, zeroth-order modified Bessel function of
the first kind

k¥ stagnant thermal conductivity of the
saturated packed bed
kX effective thermal conductivity
k¥  thermal conductivity of the fluid
¥ thermal dispersion coefficient

I mixing length for transverse thermal
dispersion

n exponent defined in equation (55)

N, constant defined in equation (1)

N,  constant in equation (3)

Nusselt number based on the inner

cylinder defined in equation (59)

p* pressure

Pe Péclet number

Pr Prandtl number

qw, heat flux at the wall of the inner cylinder

Reynolds number based on particle

diameter

T*  temperature

T*  temperature of the outer cylinder

T¥  temperature of the inner cylinder

U dimensionless inner velocity defined in
equations (24b) and (38b)

NOMENCLATURE

0, first-order inner velocity

u dimensionless outer velocity

u* velocity in z*-direction

u, first-order outer velocity

uk mean velocity defined in equation (10)

v* velocity in r*-direction

z* coordinate along the axis of the annular
bed

R dimensionless inner variable defined in

equations (24a) and (38a)

dimensionless radial coordinate

dimensionless outer variable defined in

Y

equations (17) and (32)

r* radial coordinate

r¥ radius of the inner cylinder

r¥ radius of the outer cylinder.

Greek symbols

o dimensionless pressure drop parameter

B empirical constant in the mixing length
theory

¥ dimensionless parameter defined in
equation (11)

€ perturbation parameter defined in

equation (19)
U viscosity of fluid

v kinematic viscosity of fluid

o dimensionless parameter defined in
equation (12)

W dimensionless constant defined in

equation (55)
¢*  porosity of the packed bed.

Subscripts
w wall condition
0 condition away from the wall
i quantity associated with the inner
cylinder
o quantity associated with the outer
cylinder.

teristics. Closed form solutions for the temperature
distribution and the Nusselt number are obtained
based on three velocity models, i.e. Brinkman’s
model with variable and constant permeability as
well as the plug flow model. Computations were car-
ried out corresponding to the experiments conducted
by Yagi and Kunii [12] for forced convection of air
(Pr=10.7) in an annular bed filled with glass beads.
The fact that the heat transfer characteristics pre-
dicted in the present paper are in good agreement with
experimental data reaffirms the validity of the mixing
length concept and the Prandtl number dependence
of the thermal dispersion coefficient. The present

approach can easily be extended to the modeling of
the transport processes in a catalytic bed.

VELOCITY DISTRIBUTION IN AN ANNULAR
PACKED COLUMN

Measurements show that the porosity of a packed-
sphere bed increases from a value of 0.36 ~ 0.4 in the
bulk of the bed to 0.8 ~ 1.0 at the wall [13, 14]. The
variation of the porosity takes the form of a damped
oscillatory function with the oscillations damped out
at about 4-5 sphere diameters from the wall. As
shown in the previous papers {10, 15], the variation
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of the porosity can be approximated by an exponential
function. Thus, for a packed bed inside an annular
with outer and inner radii r¥ and rf¥ (see Fig. 1), the
porosity can be approximated as

¢* = ¢L{1+Ciexp[—N,(r¥—r*)/d,]},

(rF—r92<r* <y (la)
¢* = ¢L{1+Ciexp[—N,(r* —r¥)/d,]},
rE<r*<(r3-r¥/2 (1b)

where ¢% is the porosity at the bulk of the packed
bed, d, is the diameter of the particle and r* is the
radial coordinate. The constants ¢*, C, and N,
chosen in previous papers [10, 15] are ¢* =04,
Ci,=1land N, =2.

Since the permeability of a packed bed as a function
of radius cannot be measured directly, its functional
relationship can be inferred from equation (1) to-
gether with the following equation

K* = di¢p*’[A(1—¢*)’ @

where K* is the permeability and 4 = 150 is an em-
pirical constant [16]. For the purpose of obtaining
an analytical solution for the flow field, the implicit
relation between K* and r* as given by equations
(1) and (2) can be approximated by an exponential
function [10]

K* = K% {14+ C,exp [~ N,(r*—r*)/d ]},

rs—rR<r*<ré (Ga)
K* = KX {1+ C,exp [~ N,{r*—r*)/d,]},
r*<r<(ri-r®/2 (3b)

where K% is the permeability at the bulk of the packed
bed which is given by

K% = d2¢%3/A(1—¢%)? = 1.185x 1034}

if ¢% = 0.4 and 4 = 150. The constants C, and N,
were obtained by matching equations (3) with the
exact implicit function given by (1) and (2). This pro-
cedure was used in a previous paper [10] to obtain
C,=20and N, =4.
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The governing equations based on the Brinkman
model [17] for the velocity distribution of a fully-
developed flow in a cylindrical packed bed are

£
Z’:*— . 0% =0 (4a,b)
pa* o op*  op 0| out
- e T O
a %*
5’%:0 (6)

where u* and v* are the velocities in the axial
(z*) and radial (»*) directions, p* is the pressure, and
u is the viscosity of the fluid. In equation (5) it is
assumed that dp*/0z* is constant, and that the inertia
effect is neglected as a first approximation. In equa-
tions (4)—(6), we have implicitly assumed that d, « r¥
so that the porous medium can be considered as a
continuum.
The boundary conditions for the velocity are

r*=r¥* u*=0 @)
r*=r¥ uw*=0. 8)

Equations (1)—(8) are the governing equations and
boundary conditions for the velocity distribution in a
fully-developed flow in an annular packed bed with
wall effects.

We now introduce the following dimensionless vari-
ables

u=u*ut, r=r*r* and K=K*/K¥ (9

where u¥ is the average velocity defined as
2 i

* . “
" (r:Z_ri*z) 64

u*r* dr*.

(10)

Equations (3)—(6) and (10) in terms of these dimen-
sionless variables are

K=1+4+C,exp[—N,—1D/],

for 1<r<(r,—1)/2 (11a)
K=1+ Cexp[—N,(r,—n)/y},
for (r,—12<r<r, (11b)
u ¢t d{ du
R=d+ga(7’a> (12)
and
ro 02_1
Jl urdr = 3 (13)
where
K% dp*
o= “ﬁ@a ro = r,nk/ri*s Y= dp/ri*y

o= /K—E(l*)=¢=5.44x10‘2y
SR\ -gr) /4
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(if ¢* = 0.4 and A4 = 150). Since \/Ei]?p'i «d,<rf,
it follows that
(14)

Thus, the present problem contains two small par-
ameters ¢ and y. Equation (11) shows that the thick-
ness of the non-uniform permeability layer is of O(y)
while equation (12) shows that the thickness of the
boundary friction layer is of O(s). The thickness of
these layers is sketched in Fig. 1.

Equations (11)-(12) are to be solved subject to the
boundary conditions

o<yl

u=90
u=0.

(15)
(16)

We now obtain an analytical solution for equations
(11)~(13) subject to boundary conditions (15) and (16)
by the method of matched asymptotic expansions
under the condition specified by equation (14).

re=1,

F==To

FLOW FIELD NEAR THE INNER CYLINDER

To investigate the flow field near the inner wall at
r = |, the following new independent variable will be
introduced:

F=(r—1)y. a”n

Equations (11a) and (12) in terms of the new variable
are

K=1+C,e ¥ (18)

u g?
= 05 &F [( +77) ] (19)

a__
Vo (1-¢%)/4

Equations (18) and (19) are to be solved subject to
the boundary conditions

7= 0

=544x10"?

u=0 20)

F—o0: uis finite. 2D
Non-uniform permeability layer near the inner cylinder

We now attempt to solve equations (18)—(21) by the
method of matched asymptotic expansions. To this
end, the dependent variable will be expanded in the

following form

U= u,+eu, +0(e?) (22)
Substituting equation (22) into (19) yields
U, = aK = a1+ C,e M~ 0] 23)

which satisfies boundary condition (21} auto-
matically.

Boundary friction layer near the inner cylinder
To investigate the boundary friction layer near the
inner wall at r = 1, the following new independent
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variables will now be defined
R=(r—1)s,
Substituting equation (24) into (11a) and (12) yields
K=1+Cre Mk ¢ =14C e "R

U=y, {24a,b)

(25a,b)
U 1 d . 40
=T U5ohs ak [“ +oR ﬁ} ¢

which are to be solved subject to the boundary con-
ditions

R=0: U=0 (27a)
R - oo : U must match with the solution for
the non-uniform permeability layer. (27b)

To solve equations (25)-(27), U and K are
expanded in the following form

U=0,+¢0,+0(Y (28a)
K=14C,—C,N,R+0(%) (28b)
¢ =1+C,—eC N, R+ 0. (28¢)

Substituting equations (28) into equations (25)—(27)
yields the following first-order problem

U, 1
1+C, VT (foBCdR

[(1 +0R) ] (29)

where C = 14 C,. Equation (29) is to be solved subject
to the boundary conditions

R=0: U,=0 (30)

and as R — oo, U, must match with the solution of
the non-uniform permeability layer.

It can be shown that the solution to equation (29)
subject to boundary condition (30) is

_Ko[rﬁ/(o\/l+c2mr -
Koly/Clo/1+C)

where K, is the zeroth-order modified Bessel function
of the second kind. Note that equation (31) matches
with (23) under the limits of R — co and # — 0.

U, =a(1+C,) {1

FLOW FIELD NEAR THE OUTER CYLINDER

To investigate the flow field near the outer cylinder
at r = r,, the following new independent variable will
now be introduced

F=(ro—n)fy. (32)

Equations (11b) and (12) in terms of the new variable
are

K= 1+C23_N2f’

u &’ du
k=Y e S5 ar [(’ V’)E} G4

¢=1+C e ¥ (33a,b)
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which are to be solved subject to the conditions
F=0: (35)

(36)

u=20

F— oo: uisfinite.
Non-uniform permeability layer near the outer cylinder

It can be shown that to the first order, the solution
of the non-uniform permeability layer near the outer
cylinder is

—N.ir —n1jv
N(ro—r)v

HemO] €

which satisfies boundary condition (36) automati-
cally.

u, = oK =aji+C,e

Boundary friction layer near the outer cylinder
To investigate the boundary friction layer near the
outer cylinder (at r,), the following variables will now

be used
fo—r A

R= , U=u
c

(38a,b)

Substituting equations (38) into (11b) and (12) yields

K=1+C,e Nk (39
U 1 d . dU
E=d+mé&[(ro—01@d—ﬁ] (40)

which are to be solved subject to the boundary con-
ditions (30). If U and K are expanded in the form of
equation (28), the first-order problem becomes
0. 1 d 5. dU,
°_ | (ro—oR) 2| (@
1+C, * T .—eRC de:(r° k) dR:l @

subject to the boundary conditions (30). It can be
shown that the solution is

. I[r/Cl(e/1+C.)

U, =a(1+Cy31 — 42)
Llro/Cle/1+C))]

where I is the zeroth-order modified Bessel function

of the first kind. Again, equation (42) matches with
(37) when R — oo and 7 = 0.

Uniformly valid solutions

A uniformly valid solution to the first-order can be
constructed from equations (23), (31), (37) and (42)
to give

u= a{1 +C e Na= Dl g g Matromnin]

—(1+C)) [K"[r\/é/(am)]
Ko[ﬁ/(ox/—l-—k_é;)]
MRAUNASIGNART S ]}Jr 0). @3
Lilre/ Clloy/ 1+ C))]

If modified Bessel functions are expanded asymptot-
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ically (¢ — 0), the above equation becomes

u= a{l + Cz[e-Nz(r— Diy +evN2(r,,~r)/V]

_(+Cy) (exp [_ r— 1)\/EJ
\/; o /1+C,
(ro—r)\/ED}
+roexp| — =X | )e4 0 (44)
rexpli Ry @ (

where a can be determined by substituting equation
(44) into (13) to yield

r2—1 r2—1 Cyy
rx=< 3 )/{ 2 +—ﬁ2*(ro+l)

9 [l_e—Nz(’o—l)/T]_.(1+C2)( ['\/;

xexp[— Q;—/L)__\/vé—ldr—%\/r’o [ \/;

r
L o/1+C,d vl

& —r)fC] )}
———Y—|dr }p+0C(s). 45)
xexp[ o r (8) (

If the permeability is assumed to be constant (i.e.
the Brinkman model with constant permeability),
equations (44) and (45) with C, = y = 0 give

U= cx{l — %[e'(" 1)‘/a"+\/r—(,e’('v"Va"]}
r

(46)

ri—1\/{ri-1 o z
{2 ° _ —(r—-1)J/Cla
()L e

+\/ZJ"° \/;e\uo—ruf” dr]}- @7

The plug flow model is equivalent to setting ¢ =0
in equations (46) and (47) to give

u=o0=1 (48)

NUMERICAL RESULTS FOR VELOCITY
DISTRIBUTION

Equations (43) and (44) show that the velocity pro-
file for a variable permeability annular bed depends
on the values of C,, N,, y and r,. With

K*
C2=20aN2=4a0'= a,g/ri*=5.44)(10*2'y

the velocity distribution depends only on y and r,.
Figure 2 shows the effect of y on the axial velocity
distribution in an annular packed bed with inner and
outer radii of 0.011 m and 0.035 m (i.e. r, = 3.18),
which was the packed bed used by Yagi and Kunii
[12). The three values of y correspond to the three
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C,720, Ny=4, ¢2:0.4

-
y=0.085
//7=0.25

/y =0.464

1 1

20

2.5 30
r

F1G. 2. Wall channeling effect on axial velocity.

different sizes of the particle diameters used in Yagi
and Kunii’s experiments (see Table 1). It is shown
from Fig. 2 that the velocity overshoot occurs in the
variable permeability bed near the inner and outer
cylinders. The magnitude of the velocity overshoot
increases as y is decreased. The velocity overshoot is
slightly higher near the inner cylinder (at » = 1) than
that near the outer cylinder (at r = r,). The maximum
velocity occurs at about 1/4 particle diameter away
from the inner cylinder, and about 1/3 particle diam-
eter away from the outer cylinder. The shape of the
velocity profile presented in Fig. 2 is in qualitative
agreement with the variational solution obtained by
Vortmeyer and Schuster [15] for small and moderate
values of Re, (Re, < 100).

HEAT TRANSFER CHARACTERISTICS IN THE
ANNULAR PACKED COLUMN

We now consider the heat transfer characteristics
of the fully-developed forced convective flow in
the annular packed column at temperatures T;*
and T* As shown in Fig. 1, the thermal boundary

conditions for the problem are
T* =Tk
T*=Tt

r*=rk

i

(49a)
(49b)

For an annular packed column that is heated
and cooled circumferentially, the thermally fully-
developed flow can be defined as

oT*

9z

With the aid of equations (4b) and (50), the energy
equation for the forced convective flow is

*
¢ (14T o

dr* dr*
where k¥ is the effective radial thermal conducivity of
the packed bed which is a superposition of the stag-
nant thermal conductivity (k¥) and the radial dis-
persion coefficient (k¥), i.e.

k¥ = kX +k¥.

r* = r:!

(50)

(D

(52)

The value of k¥ can be computed from the following

Table 1. Experiments conducted by Yagi and Kunii [12]

dp T, : Ti* hw| At 1 qwi
Run No. (m) Re, ()] (°C) (kcalm™2h~'°C~") (°C) (Wm™ y Materials
A-6 0.00057 7.8 100 8 170 9 1776 0.051 Glass beads and air
A-11 0.00057 17.6 100 8 185 8 1718 0.051  Glass beads and air
A-17 0.00057 324 100 8 170 9 1776 0.051  Glass beads and air
B-6 0.00094 14.3 100 16 70.0 19 1544 0.085 Glass beads and air
B-12 0.00094 322 100 17 95.5 14.5 1607 0.085 Glass beads and air
B-19 0.00094 75.3 100 16 142.0 12.5 2061 0.085 Glass beads and air
C-4 0.00275 74.0 100 19 82.7 19.0 1824 0.25 Glass beads and air
C-9 0.00275  131.0 100 19 85.5 19.0 1886 0.25 Glass beads and air
C-20 0.00275  266.0 100 15 107.0 21.0 2608 0.25 Glass beads and air
C-26 0.00275 3720 100 15 145.0 21.5 3619 0.25 Glass beads and air
D-9 0.0051 178.0 100 13.5 75.0 24.0 2089 0.464  Glass beads and air
D-13 0.0051 236.0 100 13.5 85.9 23.0 2293 0.464  Glass beads and air
D-19 0.0051 332.0 100 13.5 99.5 26.0 3003 0.464  Glass beads and air
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semi-analytical equation given by Zehner and
Schluender [19]

M -+

1-1B

(1-»B . 1 B+l B-1
x[———ln————mjl (53)

where B = 1.25[(1 —¢*)/¢*1'"® and 1 = k¥/k¥* with
k¥ and k¥ denoting the thermal conductivity of the
fluid and the solid particle respectively. Equation (53)
shows that the stagnant thermal conductivity is a func-
tion of position for a variable porosity bed.

As proposed by Cheng and Vortmeyer [10], we now
assume that the radial thermal dispersion coefficient
k% is of the form

*/k#* = Dy Peul (54)

where Pe = Pr Re, with Pr denoting the Prandtl num-
ber of the fluid, and Re, = u%d,/v is the Reynolds
number based on the mean velocity and the particle
diameter, and / is the mixing length for radial thermal
dispersion which is given by

r*—r¥Y
Bd,

= 1
rj—r*)"
Bd,
r— 1)"
Y

= 1
(=)
)

where w = fd,/r*. Cheng and Vortmeyer [10] found
that with § = 0 (i.e. wall effects on transverse thermal
dispersion is unimportant), the large temperature
drops observed in Schroeder e al.’s data [11] cannot
be reproduced with the theory. They found that the
values of n=1, D;=02~025 and $=2~25
match the theory with Schroeder er al.’s data well.
Equations (55) show that the mixing length in the wall
regions varies linearly with the distance from the wall,
and that the effect of a bounding wall on the radial

thermal dispersion vanishes at a distance of 2 ~ 2.5
particle diameters away from the wall.

for the inner wall region
(rF<r*<rf+Bd)

for the core region
(r¥+pd, < r* <ri—pd)
for the outer wall region
(r5—Bd, <r*<rd)

or

forl<r<l+w

for l1+o<r<r,~w (55

forr,—w<sr<r,

Solution of the radial temperature distribution
Equations (51)—(55) with u given by equation (43),
(46) or (48) subject to boundary conditions (49) can
be obtained by a direct integration. Since the
expression for the mixing length given by equation
(55) depends on location, the solution of temperature
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distribution depends on the region under consider-
ation. Moreover, the solution depends on whether the
effect of the wall on the radial thermal dispersion
is felt over part of the bed or the entire bed, i.e.
(r¥—r*)[2 > pd, or (r3—r*)/2 < d,,.

(i) For the case of (r¥—r*)/2 > Bd, or r, > 2w +1,
the temperature is given by

r dr
* = T*
™*(n =T, +DJ11 r{k¥+ D1k# Pr Re ul(r— 1)/w]"}

for theinner wallregion, ] € r < 1+ (56a)

. dr
£3 —_ *
T™*n=T (1+w)+DJ1+mr(k?+Dka* Pr Re,u)

forthecoreregion, 1+w <r<r,—w (56b)

T*(r) = T*(r,—w)

’ dr
+D _[O_w 7{k? + Dokf Pr Reul(r, —n)joo]'}
for the outer wallregion, r,—w < r <r, (56c)

where

D= (T:—T:«)/

14w dr
U r{kg+Dk¥ Pr Re,ul(r—D)/ol'}

o dr
+ Lw r(k? + Drki* Pr Re,u)

"o dr
+ ‘[n,—w) r{k}+ Dk} Pr Re u[(r,— r)/w]"}}'
(56d)
(i) For the case of (r¥—r*)/2<pd, or r,<
2w+1, the wall effect is felt over the entire bed. In
this case, the temperature distribution is given by

dr
+ D1k Pr Re ul(r—1)/o]"}

() — T
T*(r) T'+D£r{k5"

for the inner wall region, 1l <r < (r,—1)/2 (57a)
. _ T r,—1
T*(n=T (~—2

4 dr
+D
J;,c_ w2 r{k¥+ D1k# Pr Re u[(r, —r)/o]"}

for the outer wall region, (r,— 1)/2 < r <r, (57b)
where
D= (T%-T¥ /

(ro— 12 dr
, r{k&+ Dk Pr Reyul(r— )]}

4 dr
+ L, o2 1 {kE + Dok Pr Reyul(r,— r)/w]"}} (57¢)
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The surface heat flux from the inner cylinder is

dT* D
= | k* - _Z
o, (ke dr*)‘_¢ g (58)
which can be rewritten in dimensionless form as
qW,ri* D
Ny, (59)

TRNTI-TY T T R (TE-TY

where Nu; is the Nusselt number based on the radius
of the inner cylinder.

NUMERICAL RESULTS FOR HEAT TRANSFER
CHARACTERISTICS

Equations (56)—(59) show that the heat transfer
characteristics in an annular packed bed depend on the
values of n, B, Dy, d,, r,, k¥, kf, T*, TX Pr, Re,, C,
and N,. They also depend on the values of C, and
N, implicitly through their dependence on the velocity
profile. Computations for the heat transfer charac-
teristics were carried out for the 13 experimental runs
conducted by Yagi and Kunii [12]. These experiments
were carried out with air (Pr = 0.7 and k¥ = 0.027
W m~' K') flowing through an annular packed bed
comprised of glass beads (k* =1.05 W m~' K~ ).
Other experimental conditions (d,, Re,, T* and T7%)
together with the experimentally determined wall heat
transfer coefficient from the inner cylinder (4,,) and
temperature difference (At,) are listed in Table 1. Also
listed in the table are the experimentally determined
values of surface heat flux from the inner cylinder g,;,
which were computed according to

(60)

Other experiments performed by Yagi and Kunii [12]
with y > 0.4 are not listed in Table 1.

Gwi = hy ALy
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Computations for the heat transfer characteristics
were carried out based on the three velocity models
[i.e. Brinkman’s model with variable and constant
permeability as well as the plug flow model as given
by equations (44), (46) and (48)]. It is relevant to
mention that the radial variation of the stagnant ther-
mal conductivity (due to porosity variation) must be
taken into consideration even though the constant
permeability assumption is used in the computations
of the velocity profiles [i.e. equations (46) and (48)].
It was found that if the values of n=1, =2,
Dr= 0.2,C,=14and N, = 2 are used in the theory,
the predicted heat transfer characteristics based on
the three velocity models match with experimental
data.

Of the 13 experimental runs listed in Table 1, Yagi
and Kunii [12] chose to present the temperature dis-
tribution data only for one case (C-9). Since the exper-
imental conditions for other temperature data pre-
sented in Yagi and Kunii’s paper are not reported
explicitly, simulations of these temperature data can-
not be performed. A detailed comparison of tem-
perature distribution between experiments and theory
(based on the three velocity models) can therefore
only be made for the case of C-9, which is displayed
in Fig. 3b. It is shown that the predicted temperature
distribution based on the Brinkman model with a
variable permeability (shown as a solid line in the
figure) predicts a smaller temperature drop near the
walls than that of the other two velocity models
(shown as dashed lines), and that the solid line agrees
the best with experimental data.

The predicted temperature distribution for the case
of B-12 (Re, = 32.2 and y = 0.085) is presented in Fig.
3a. At a low Reynolds number of 32.2 and a small
value of y, the predicted temperature distributions
based on the Brinkman model with a constant per-

T T
120 ~ b

100

20F Req:322y:0085 -
B:2,0;:02,C,714

— Variable Permeability|
——Plug Flow
---- Const. Permeability

7 Req=131,y:0.25 3
B:2,0;:02,C,:14

Req=332, y=0.464

B=2,07:02,C,21.4 —‘

0 ] | - 1 |
1 2 31 2 31 2 3
r r r

FIG. 3. Comparison of predicted and experimentally determined temperature profiles in an annular packed
column.
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meability and the plug flow model are indiscernible in
the graph. The temperature data presented in Fig. 3a
is actually for case B-14 with Re, = 40.6 which is
slightly higher than the simulated data with
Re, = 32.2. Again, it is shown that the predicted tem-
perature distribution based on the Brinkman model
with a variable permeability agrees the best with
experimental data.

The predicted temperature distributions based on
the three velocity models for the case of D-19
(Re, = 332 and y = 0.4) are presented in Fig. 3c. It is
shown that at a high value of y = 0.4, the predicted
temperature distribution near the cooled inner surface
based on the plug flow model or the Brinkman model
with constant permeability is substantially higher than
that of the Brinkman model with a variable per-
meability.

A comparison of the predicted and experimentally
determined Nusselt number based on the inner cyl-
inder of the annular packed bed as a function of the
Reynolds number at four values of y is displayed in
Fig. 4. The predicted Nusselt numbers based on three
velocity models, are shown to be in good agreement
with experimental data. At a low value of y (y = 0.051
for example), the predicted Nusselt numbers based on
the three velocity models are indiscernible in the
graph. At higher values of y and Re, (y = 0.464 and
Re,, > 100), the Nusselt number predicted by the plug
flow model is higher than those of the Brinkman
model with variable or constant permeability. Thus,
the shape of the velocity profile has a relatively small
effect on the Nusselt number at small and moderate
values of Re, (Re, < 100). It is relevant to note that
for a given value of y, the slope of the Nu; vs Re, curve
increases from zero as the value of Re, is increased.

50 T T LI LA L | T T

401 B:2,0;:02, C=14,Pr=0.7 B

0 o y:00s .
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208 o y:025 -
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3| ———— Variable Permeability -1
—_— Plug Flow
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1 ) TR I N R | 1 [
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Rep

F1G6. 4. Comparison of predicted and experimentally deter-
mined Nusselt number in an annular packed column.
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CONCLUDING REMARKS

The mixing length theory, proposed by Cheng and
Vortmeyer [10] for transverse thermal dispersion in a
packed bed with a bounding wall, is applied to the
problem of fully-developed, forced convective flow
through an annular bed. With the values of = 2.0
and Dy = 0.2 used in the mixing length theory, the
predicted heat transfer characteristics based on the
three velocity models are found in good agreement
with experimental data. With these values the pre-
dicted temperature profiles based on the variable per-
meability model agree the best with experimental data.
Presumably, if other values of § and Dy are used in
the theory, a closer match between experimental data
and theory based on the plug flow model and the
Brinkman model with a constant permeability can be
achieved. This has not been attempted in view of the
approximate nature of the theory. The results of the
present analysis, however, do reinforce the validity of
the mixing length theory and the Prandtl number
dependence of the radial thermal dispersion
coefficient.

One of the assumptions made in the present analysis
is that the inertia effect (i.e. the velocity square term
in the momentum equation) is negligible. For high-
speed forced convective flow in a packed bed where
the nonlinear term in the momentum equation must
be included, a closed form solution for the velocity
distribution may not be possible and numerical
solution is preferred. This aspect of the problem is
presently under investigation.
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ECOULEMENT DE CONVECTION FORCEE ETABLI A TRAVERS UN LIT FIXE
DE SPHERES ANNULAIRE AVEC EFFET DE PAROI

Résumé—On analyse I’écoulement forcé convectif établi a travers un lit fixe de sphéres entre deux cylindres
concentriques maintenus 4 différentes températures. Les variations radiales de la porosité et de la per-
méabilité dans le lit prés des parois, connues comme effets de paroi, sont approchées par des fonctions
exponentielles. Le modéle de Brinkman avec permeéabilité variable est utilisé. Une solution analytique basée
sur la méthode des développements asymptotiques est obtenue pour la distribution de vitesse. On montre
que des survitesses apparaissent prés des cylindres, avec une importance légérement plus grande prés du
cylindre intérieur. A cause de la variation non uniforme de porosité prés des parois, la conductivité
thermique fixe du lit varie aussi dans la direction radiale. Une théorie de longueur de mélange, proposée
récemment par Cheng et Vortmeyer pour la dispersion thermique est utilisée pour obtenir la distribution
radiale de température et le nombre de Nusselt du lit annulaire. Des calculs thermiques sont conduits
sur trois modéles dynamiques, modéle de Brinkman avec perméabilité constante et variable et modéle
d’écoulement piston. On trouve qu’avec la théorie de la longueur de mélange, les prédictions des carac-
téristiques thermiques basées sur les trois modéles de vitesse sont en bon accord avec les données
expérimentales. Les profils de température calculés avec le modeéle de Brinkman & perméabilité variable
s’accordent mieux avec les mesures de température.

VOLL AUSGEBILDETE ERZWUNGENE KONVEKTIONSSTROMUNG DURCH EIN
RINGFORMIGES KUGELSCHUTTBETT MIT RANDEFFEKTEN

Zusammenfassung—Es wird eine Untersuchung fiir eine voll ausgebildete erzwungene Konvektions-
stromung durch ein ringférmiges Kugelschiittbett zwischen zwei konzentrischen Zylindern unterschied-
licher Temperatur vorgestelit. Die Anderungen von Porositiit und Permeabilitit in radialer Richtung nahe
der Wand, als Wandeffekte bekannt, werden durch Exponentialfunktionen angendhert. Als Impulsglei-
chung wird das Brinkman-Modell mit unterschiedlicher Permeabilitit verwendet. Fir die Ge-
schwindigkeitsverteilung erhdlt man eine analytische Losung, die auf der Methode der asymptotischen
Anpassung basiert. Es zeigen sich Ubergeschwindigkeiten in der Zone variabler Permeabilitit in Wandnihe
des inneren und duBeren Zylinders. Die Ubergeschwindigkeit ist am inneren Zylinder mit dem kleineren
Radius etwas hoher. Wegen der ungleichméBigen Porositdtsdnderung in Wandnéhe dndert sich somit die
Wairmeleitfdhigkeit des Betts auch in radialer Richtung. Es wird eine kiirzlich von Cheng und Vortmeyer
vorgeschlagene Mischungslingentheorie fiir die thermische Querausbreitung verwendet, um die radiale
Temperaturverteilung und die Nusselt-Zahl fiir das ringférmige Bett zu ermitteln. Mit drei Ge-
schwindigkeitsmodellen (dem Brinkman-Modell mit variablen und konstanten Permeabilititen und dem
Pfropfenstrémungsmodell), wurden Berechnungen der Warmeiibertragungscharakteristiken durchgefiihrt.
Mit der Mischungsltingentheorie ergab sich eine gute Ubereinstimmung der theoretischen Vorhersagen der
Wirmeiibergangscharakteristiken, basierend auf den drei Geschwindigkeitsmodellen, mit den Expe-
rimenten. Die vorhergesagten Temperaturprofile, die mit dem Brinkman-Modell mit variabler Permeabilitdt
ermittelt wurden, stimmen am besten mit den Temperaturmessungen liberein.
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NOJHOCTBIO PA3BUTOE BbIHYXJAEHHO-KOHBEKTHUBHOE TEYEHHWE YEPE3
KOJILLIEBOM, 3AIIOJTHEHHBI COEPMYECKUMH YACTULIAMU CJIOW, C YYETOM
MPUCTEHHBIX 3¢PEKTOB

ABHOTRUNE—AHAM3HPYETCS NOJHOCTBIO PA3BHTOE BbIHYXACHHO-KOHBEKTHBHOE TEHYEHHE Yepe3 3amoJ-
HEHHBIH chepHUeCKHMM YacTHUAMH CI0# MeXAY KOHIEHTPHYECKHMH LMTHHAPAMH, HMEIOIIHMHA pa3Hbie
TemnepaTypl. PaguanbHble H3MEHEHHs MOPO3HOCTH M MPOHHMLEAEMOCTH B CJl0e BOIM3M CTEHOK, M3BECT-
Hble KaK MPHCTEHHBIE 3GdeKThl, aNMPOKCHMHPOBAINCH C MOMOUIBIO 3KCNOHEHUHANbHLIX GyHKuMi. B
Ka4eCcTBE YPABHCHMS KOJIMYECTBA OBHXKEHHS HCIIONb30Banach MoAeas BpHHkMaHa ¢ uaMeHsiowedica
npoHHUaeMOCTb0. TToMyueHO aHAIMTHYECKOE peIlieHHe, OCHOBAHHOE HA METOE CPAaLUMBAEMBIX ACHMII-
TOTHYECKHX Pa3/I0KEHHI, NO3IBOJIAIOLIEE PACCYHTBIBATD M0JE cKopocTeil B cioe. [TokasaHo, 4TO B CJIOE C
NepEMEHHOH NMPOHHULAEMOCTIO BOIMAK BHYTPEHHEIO M HAPYXXHOT'O WHJIKHAPOB CKOPOCTh BRILLE, YEM B
ocTansHOM 06BeMe Ci10A. BenuunHa 3TOro NMpeBbIIEHHs CKOPOCTH HECKOJNbKO GoJiblile y BHYTPEHHErO
LMIHHAPA C MEHBLKM paanycoM. TeruonpoBOAHOCTE €O TaKXKE MEHACTCA B paAHaILHOM Hampasje-
HHM H3-32 HEOJHOPOJAHOTO H3MEHEHHS MOPO3HOCTH OKOJNO CTeHOK. TeOpHs MJIMHBI MYTH CMEIUEHHS,
npeasioxennas Uenrom u ¢oprmeilepoM AN nmonepevHo#l TEMIOBOR AMCNEPCHHM, HCNIONbLIYETCH LIS
HAXOXACHHS PalHajIbHOTO pacnpenesieHHa TeMnepaTyp i yncia Hyccenbta Xxonbuesoro cnos. Xapaxre-
PHCTHKH TEILUIONEPEHOCA PACCYHTAHBI Ha OCHOBE TPEXCKOPOCTHBIX MojesieH, T.e. Monenn BpurkMana ¢
NePeMEHHBIMU M MOCTOAHHBIMH MPOHMLAEMOCTAMH H MOJENH MOPIIHEBOro TedeHus. OGHapyxkeHo, HTo
NpH HCTOJIb30BAHHH TCOPHH MYTH JIMHBLI CMELICHHA TEOPETHYECKHE PAacueThl XapaKTEPHCTHK TEMI006-
MEHa, OCHOBAHHBIC HA TPEXCKOPOCTHABIX MOMEJIAX, XOPOLIO COTJIACYIOTCHA ¢ MMEIOLIMMHCA SKCNEPHMEH-
TaNbHbIMH AaHHBIMH. [Ipodunn TemmepaTyp, paccuMTaHHbie O MolenH BpunkMmaHa ¢ u3MeHstowWeiHcs
MPOHHIAEMOCTBIO, XOPOLLO COOTBETCTBYIOT JAHHBIM TEMIIEPATYPHBIX H3IMEHEHHH.
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