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Abstract-An analysis is performed for a fully-developed, forced convective flow through a packed-sphere 
bed between concentric cylinders maintained at different temperatures. The radial variations of the porosity 
and permeability in the bed near the walls, known as wall effects, are approximated by exponential 
functions, The Brinkman model with variable permeability is used as the momentum equation. An 
analytical solution based on the method of matched asymptotic expansions is obtained for the velocity 
distribution. It is shown that velocity overshoots occur in the variable permeability bed near the inner and 
outer cylinders. Because of the non-uniform porosity variation near the walls, the stagnant thermal con- 
ductivity of the bed also varies in the radial direction accordingly. A mixing length theory, proposed 
recently by Cheng and Vortmeyer for the transverse thermal dispersion, is employed to obtain the radial 
temperature distribution and the Nusselt number of the annular bed. Computations of the heat transfer 
characteristics were carried out based on three velocity models, i.e. Brinkman’s model with variable and 
constant permeabilities as well as the plug flow model. It is found that with the mixing length theory, 
theoretical predictions of the heat transfer characteristics based on the three velocity models are in good 
agreement with the existing experimental data. The predicted temperature profiles, based on the Brinkman 

model with a variable permeability, agree the best with temperature data. 

INTRODUCTION 

THE LUMPED parameter model has often been used 
to study the performance of a wall-cooled catalytic 
reactor [l]. The model assumes a plug flow with a 
constant transverse thermal dispersion coefficient. To 
account for the higher thermal resistance at the wall, 
a derivative boundary condition with a finite wall 
heat transfer coefficient is assumed. The values of the 
transverse thermal dispersion coefficient and the wall 
heat transfer coefficient used in the model were 
obtained experimentally from forced convection in a 
cylindrical packed column without chemical reac- 
tions. The experimental data for the wall heat trans- 
fer coefficient is found to be widely scattered [2, 31. 

In comparison with experimental data, the lumped 
parameter model is known to overpredict the hot 
temperature spots in wall-cooled catalytic reactors [4]. 
Some investigators [5-71 have attributed this dis- 
crepancy to the entrance length effect of the wall heat 
transfer coefficient and to the plug flow model which 
does not take into consideration the non-uniform 
radial velocity distribution; others question [8] the 
validity that the wall heat transfer coefficient, deter- 
mined for a packed bed without chemical reactions, 
can be used for the modeling of the transport pro- 
cess in a catalytic bed. 

In a recent paper, Ahmed and Fahien [9] have 
shown that by allowing the effective thermal con- 
ductivity as a function of radius, a wall heat transfer 
coefficient is not needed to account for the higher 

thermal resistance at the wall. Most recently, Cheng 
and Vortmeyer [lo] proposed a two-layer mixing 
length theory for the transverse thermal dispersion 
process in order to take into consideration the higher 
thermal resistance at the wall of a packed bed. In their 
analysis the transverse thermal dispersion coefficient 
is assumed to be linearly proportional to the P&let 
number (Pe); the constants in the mixing length theory 
as well as in the expression for the transverse thermal 
dispersion coefficient were determined by matching 
the predicted temperature profiles and the heat trans- 
fer rate to those of experimental data by Schroeder et 
al. [l l] for forced convection of water (Pr = 7.0) in a 
rectangular channel filled with glass beads at high 
Reynolds numbers (based on the diameter of the glass 
beads). With the introduction of the mixing length 
theory, the large temperature drop near the wall as 
observed in experiments can be reproduced theor- 
etically; the predicted heat flux is shown to be a 
function of both the P&let number as well as the 
ratio of the particle diameter to the half width of the 
channel. 

In this paper, an analysis is performed for a fully- 
developed forced convective flow through an annular 

packed bed (see Fig. 1). An analytical solution based 
on the method of matched asymptotic expansions is 
obtained for the velocity distribution in the variable 
permeability packed bed. The two-layer mixing length 
theory, proposed recently by Cheng and Vortmeyer [lo] 
for the transverse thermal dispersion process 
is applied to obtain the radial heat transfer charac- 
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NOMENCLATURE 

A empirical constant defined in equation (2) fiO first-order inner velocity 
B constant defined in equation (53) u dimensionless outer velocity 

CI constant defined in equation (1) u* velocity in z*-direction 

C2 constant in equation (3) % first-order outer velocity 

dr particle diameter * %I mean velocity defined in equation (10) 
D constant given by equation (56d) or(57c) v* velocity in r*-direction 
D, empirical constant defined in equation Z* coordinate along the axis of the annular 

(54) bed 

10 zeroth-order modified Bessel function of ri dimensionless inner variable defined in 
the first kind equations (24a) and (38a) 

K* permeability of the variable porosity r dimensionless radial coordinate 
packed bed i dimensionless outer variable defined in 

K*, permeability at the core of the packed equations (17) and (32) 
bed r* radial coordinate 

K dimensionless permeability rf radius of the inner cylinder 

K0 zeroth-order modified Bessel function of * ra radius of the outer cylinder. 
the first kind 

kd* stagnant thermal conductivity of the Greek symbols 
saturated packed bed dimensionless pressure drop parameter 

k,* effective thermal conductivity ; empirical constant in the mixing length 

k: thermal conductivity of the fluid theory 

kf thermal dispersion coefficient Y dimensionless parameter defined in 
1 mixing length for transverse thermal equation (11) 

dispersion & perturbation parameter defined in 

k, 

exponent defined in equation (55) equation (19) 
constant defined in equation (1) IJ viscosity of fluid 

Nz constant in equation (3) V kinematic viscosity of fluid 
NUi Nusselt number based on the inner d dimensionless parameter defined in 

cylinder defined in equation (59) equation (12) 

P* pressure w dimensionless constant defined in 
Pe P&let number equation (55) 
Pr Prandtl number 4* porosity of the packed bed. 

% heat flux at the wall of the inner cylinder 

Re, Reynolds number based on particle Subscripts 
diameter W wall condition 

T* temperature co condition away from the wall 

T:: temperature of the outer cylinder i quantity associated with the inner 
Tf temperature of the inner cylinder cylinder 
0 dimensionless inner velocity defined in 0 quantity associated with the outer 

equations (24b) and (38b) cylinder. 

teristics. Closed form solutions for the temperature 
distribution and the Nusselt number are obtained 
based on three velocity models, i.e. Brinkman’s 
model with variable and constant permeability as 
well as the plug flow model. Computations were car- 
ried out corresponding to the experiments conducted 
by Yagi and Kunii [12] for forced convection of air 
(Pr = 0.7) in an annular bed filled with glass beads. 
The fact that the heat transfer characteristics pre- 
dicted in the present paper are in good agreement with 
experimental data reaffirms the validity of the mixing 
length concept and the Prandtl number dependence 
of the thermal dispersion coefficient. The present 

approach can easily be extended to the modeling of 
the transport processes in a catalytic bed. 

VELOCITY DISTRIBUTION IN AN ANNULAR 

PACKED COLUMN 

Measurements show that the porosity of a packed- 
sphere bed increases from a value of 0.36 N 0.4 in the 
bulk of the bed to 0.8 N 1.0 at the wall [13, 141. The 
variation of the porosity takes the form of a damped 
oscillatory function with the oscillations damped out 
at about 4-5 sphere diameters from the wall. As 
shown in the previous papers [lo, 151, the variation 
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FIG. 1. Coordinate system. 

of the porosity can be approximated by an exponential 
function. Thus, for a packed bed inside an annular 
with outer and inner radii r,* and r: (see Fig. l), the 
porosity can be approximated as 

4* = ~*m{l+Clexp[-N,(r,*-r*)ld,l}, 

(To*-r:)/2 < r* f r,* (la) 

4* = &(l+C,exp[-N,(r*-r*)/d,]}, 

r: < r* < (r$-r:)/2 (lb) 

where 4% is the porosity at the bulk of the packed 
bed, d, is the diameter of the particle and r* is the 
radial coordinate. The constants r$*,, C, and N, 
chosen in previous papers [lo, 151 are 4% = 0.4, 
C, = 1 and N, = 2. 

Since the permeability of a packed bed as a function 
of radius cannot be measured directly, its functional 
relationship can be inferred from equation (1) to- 
gether with the following equation 

K* = L$$*~/A(~ -4*)’ (2) 

where K* is the permeability and A = 150 is an em- 
pirical constant [16]. For the purpose of obtaining 
an analytical solution for the flow field, the implicit 
relation between K* and r* as given by equations 
(1) and (2) can be approximated by an exponential 
function [lo] 

K* = K*, { 1 + C2 exp [ - N,(rZ- r*)/d,]}, 

(rz-r:)/2 < r* < rf (3a) 

K* = K*,{l+C,exp[-N,(r*-rT)/d,]}, 

r* < r* < (rz-ry)/2 (3b) 

where K*, is the permeability at the bulk of the packed 
bed which is given by 

K*, = d,24z3/A(1 -&)* = 1.185 x 10-3d; 

if 4% = 0.4 and A = 150. The constants C2 and N, 
were obtained by matching equations (3) with the 
exact implicit function given by (1) and (2). This pro- 
cedure was used in a previous paper [lo] to obtain 
C2 = 20 and N2 = 4. 

The governing equations based on the Brinkman 
model [17] for the velocity distribution of a fully- 
developed flow in a cylindrical packed bed are 

(5) 

w -=O 
&* (6) 

where u* and v* are the velocities in the axial 
(z*) and radial (r*) directions, p* is the pressure, and 
p is the viscosity of the fluid. In equation (5) it is 
assumed that ap*/az* is constant, and that the inertia 
effect is neglected as a first approximation. In equa- 
tions (4)-(6), we have implicitly assumed that d, c r: 
so that the porous medium can be considered as a 
continuum. 

The boundary conditions for the velocity are 

r* = r.* I , u* = 0 (7) 

r* = r* 0, u* = 0. (8) 

Equations (l)-(8) are the governing equations and 
boundary conditions for the velocity distribution in a 
fully-developed flow in an annular packed bed with 
wall effects. 

We now introduce the following dimensionless vari- 
ables 

u = u*/uz, r = r*/ri* and K = K*/K*, (9) 

where u$ is the average velocity defined as 

(10) 

Equations (3)-(6) and (10) in terms of these dimen- 
sionless variables are 

K= 1+C2exp[-N,(r-1)/y], 

for 1 <r < (ro-1)/2 (lla) 

K= l+ C2exp[-N,(r,-r)/y], 

for (rO-1)/2 < r < r,, (llb) 

and 

‘0 r,“-- 1 
urdr = - 

2 

(12) 

where 

K*, dp* 
Q = - _ -, r. = ryri*, y = d,/rF, 

pug dz* 

0= r#Gr 

(1 - &)fi 
= 5.44 x lo-zy 
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-.- 
(if 4% = 0.4 and A = 150). Since fi~/~~ << dP << r,*, 
it follows that 

d << y << I. (14) 

Thus, the present problem contains two small par- 
ameters Q and y. Equation (11) shows that the thick- 
ness of the non-uniform permeability layer is of U(y) 
while equation (12) shows that the thickness of the 
boundary friction layer is of U(u). The thickness of 
these layers is sketched in Fig. 1. 

Equations (ll)-(12) are to be solved subject to the 
boundary conditions 

r= 1, u=o (15) 

r = rO, u = 0. (16) 

variables will now be defined 

Iz = (r-l&, l!7= u. (2% b) 

Substituting equation (24) into (1 la) and (12) yields 

K= l+Cze-“Nz”, += l$C,e-“N*” 

(25a, b) 

6 
-=a+~~[(l+“~)~] (26) 
K 

which are to be solved subject to the boundary con- 
ditions 

We now obtain an analytical solution for equations 
(ll)-(13)subject to bounda~conditions (1S)and (16) 
by the method of matched asymptotic expansions 
under the condition specified by equation (14). 

FLOW FIELD NEAR THE INNER CYLINDER 

To investigate the flow field near the inner wall at 
r = 1, the following new independent variable will be 
introduced : 

i = (r - 1)/y. (17) 

Equations (11 a) and (12) in terms of the new variable 
are 

K- l+C,e-“2’ (18) 

where 

(r #Z ~~ = 5.44x 10-2 << 1. 
e=;= (l-4*,)& 

Equations (18) and (19) are to be solved subject to 
the boundary conditions 

i=o: u=o (20) 

?-+ co: 24 is finite. (21) 

Non-uniform permeability layer near the inner cylinder 
We now attempt to solve equations (18)-(21) by the 

method of matched asymptotic expansions. To this 
end, the dependent variable will be expanded in the 
following form 

U = f&+&U, +0(&Z) (22) 

Substituting equation (22) into (19) yields 

u, = & = n[l + C2 e-N>@- l)h] (23) 

which satisfies boundary condition (21) auto- 
matically. 

li=O: fi=O (27a) 
^ ^ 

R -+ M : U must match with the solution for 
the non-unifo~ pe~eability layer. (27b) 

To solve equations (25)-(27), U and K are 
expanded in the following form 

ii = &+&ii, +0(&Z) (28a) 

K = 1 +C,-eCzNlfi+O(e2) (28b) 

# = 1+c, -&C,N,fi+U(&2). (28~) 

Substituting equations (28) into equations (25)-(27) 
yields the following first-order problem 

8 
“=cr+ (l+~~)C~[(l+~ii)~] (29) 
1+cz 

where C = 1 + C,. Equation (29) is to be solved subject 
to the boundary conditions 

1=0: iYO=o (30) 
A 

and as R + co, o0 must match with the solution of 
the non-uniform permeability layer. 

It can be shown that the solution to equation (29) 
subject to boundary condition (30) is 

where K, is the zeroth-order modified Bessel function 
of the second kind. Note that equation (31) matches 
with (23) under the limits of B + cc and i + 0. 

FLOW FIELD NEAR THE OUTER CYLINDER 

To investigate the flow field near the outer cylinder 
at r = r,, the following new independent variable will 
now be introduced 

i = (r, -r)/y. (32) 

Equations (11 b) and (12) in terms of the new variable 
are 

K= l+C,e-N2i, 4 = 1+ C, emN1’ (33a, b) 
Boundary friction layer near the inner cylinder 

To investigate the boundary friction layer near the 
inner wali at P = 1, the following new independent . .,. _ 

(34) 
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which are to be solved subject to the conditions 

i=o: u=o (35) 

i+ co: u is finite. (36) 

Non-uniform permeability layer near the outer cylinder 
It can be shown that to the first order, the solution 

of the non-uniform permeability layer near the outer 
cylinder is 

u, = UK = a[1 + C2 e-N>(ro-‘)“‘] (37) 

which satisfies boundary condition (36) automati- 
cally. 

Boundary friction layer near the outer cylinder 
To investigate the boundary friction layer near the 

outer cylinder (at r,J, the following variables will now 
be used 

r0 - r 
j=- 

Q ’ 
0= u. (%a, b) 

Substituting equations (38) into (11 b) and (12) yields 

K = 1 + C2 emENzR (39) 

which are to be solved subject to the boundary con- 
ditions (30). If 0 and K are expanded in the form of 
equation (28), the first-order problem becomes 

ii 
D = tl+ CrO_b~)C&[(rO-ol?)$] (41) 
1+c, 

subject to the boundary conditions (30). It can be 
shown that the solution is 

where Z,, is the zeroth-order modified Bessel function 
of the first kind. Again, equation (42) matches with 
(37) when l? --t cc and i -+ 0. 

Uniformly valid so&ions 
A uniformly valid solution to the first-order can be 

constructed from equations (23), (31) (37) and (42) 
to give 

-_(lfC*) 
KJr,/C/(~J1+ Cdl 

K&%~)I 

+ Z,[rd’Fi (udrl+c,)] ___ 
11 

4 O(E). (43) 
l&,JC/(~J I+ Cdl 

If modified Bessel functions are expanded asymptot- 

ically (r~ -+ 0), the above equation becomes 

+Jr,exp [ - ~~])]+O(e) (44) 

where GI can be determined by substituting equation 
(44) into (13) to yield 

r,’ - 1 ( >I{ r,2-1 C,y 
m= __ 

2 - + 7 (rO + 1) 
2 

rexp[- (rrg]dr+&lF$ 

xexp [ - ~~~]dr)~+O(s). (45) 

If the permeability is assumed to be constant (i.e. 
the Brinkman model with constant permeability), 
equations (44) and (45) with C2 = y = 0 give 

and 
(46) 

a = (!!$!)/{!ii$ _ [ I’.J;e-“-@,“dr 

+& 
J 
:” Jre-“o-‘)vF-“& 

11 
. (47) 

The plug flow model is equivalent to setting o =0 _ - 
in equations (46) and (47) to give 

u=c(=l. 

NUMERICAL RESULTS FOR 

DISTRIBUTION 

(48) 

VELOCITY 

Equations (43) and (44) show that the velocity pro- 
file for a variable permeability annular bed depends 
on the values of Cz, N2, y and rO. With 

C2 = 20, Nz = 4, u = 
JI 

K*, ri* = 5.44 x IO-‘y 
4% 

the velocity distribution depends only on y and rO. 
Figure 2 shows the effect of y on the axial velocity 
distribution in an annular packed bed with inner and 
outer radii of 0.011 m and 0.035 m (i.e. rO = 3.18) 
which was the packed bed used by Yagi and Kunii 
[12]. The three values of y correspond to the three 
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FIG. 2. Wall channeling effect on axial velocity. 

different sizes of the particle diameters used in Yagi 
and Kunii’s experiments (see Table 1). It is shown 
from Fig. 2 that the velocity overshoot occurs in the 
variable permeability bed near the inner and outer 
cylinders. The magnitude of the velocity overshoot 
increases as y is decreased. The velocity overshoot is 
slightly higher near the inner cylinder (at r = 1) than 
that near the outer cylinder (at r = r,). The maximum 
velocity occurs at about l/4 particle diameter away 
from the inner cylinder, and about l/3 particle diam- 
eter away from the outer cylinder. The shape of the 
velocity profile presented in Fig. 2 is in qualitative 
agreement with the variational solution obtained by 
Vortmeyer and Schuster [IS] for small and moderate 
values of Re, (Re, < 100). 

conditions for the problem are 

r* = r*, T* = r* 

r* = r* o, T* = T,*. 

(49a) 

(49b) 

For an annular packed column that is heated 

and cooled circumferentially, the thermally fully- 
developed flow can be defined as 

aT* 
-_=O 
az* (50) 

With the aid of equations (4b) and (50), the energy 
equation for the forced convective flow is 

-& k$r*g =0 
( > 

(51) 

HEATTRANSFER CHARACTERISTICSIN THE 
where k: is the effective radial thermal conducivity of 

ANNULAR PACKED COLUMN 
the packed bed which is a superposition of the stag- 
nant thermal conductivity (kz) and the radial dis- 

We now consider the heat transfer characteristics persion coefficient (k+), i.e. 
of the fully-developed forced convective flow in 
the annular packed column at temperatures Ti 

k; = k$+k;. (52) 

and T,*. As shown in Fig. 1, the thermal boundary The value of k$ can be computed from the following 

Table 1. Experiments conducted by Yagi and Kunii [12] 

4 
Run No. (m) Re, 

Tj* At, 4. 
("C) (kcal m-‘% ’ “c-y (“C) (WI+) Y Materials 

A-6 0.00057 7.8 
A-11 0.00057 17.6 
A-17 0.00057 32.4 

B-6 0.00094 14.3 
B-12 0.00094 32.2 
B-19 0.00094 75.3 

c-4 0.00275 74.0 
c-9 0.00275 131.0 
c-20 0.00275 266.0 
C-26 0.00275 372.0 

D-9 0.0051 178.0 
D-13 0.0051 236.0 
D-19 0.0051 332.0 

100 8 
100 8 
100 8 

100 16 
100 17 
100 16 

100 19 
100 19 
100 15 
100 15 

100 13.5 
100 13.5 
100 13.5 

170 9 1776 0.051 Glass beads and air 
185 8 1718 0.051 Glass beads and air 
170 9 1776 0.051 Glass beads and air 

70.0 19 1544 0.085 Glass beads and air 
95.5 14.5 1607 0.085 Glass beads and air 
142.0 12.5 2061 0.085 Glass heads and air 

82.7 19.0 1824 0.25 Glass beads and air 
85.5 19.0 1886 0.25 Glass heads and air 
107.0 21.0 2608 0.25 Glass beads and air 
145.0 21.5 3619 0.25 Glass beads and air 

75.0 24.0 2089 0.464 Glass beads and air 
85.9 23.0 2293 0.464 Glass beads and air 
99.5 26.0 3003 0.464 Glass beads and air 



Forced convective flow 1849 

semi-analytical equation given by Zehner and 
Schluender [ 191 

2JW 

1-1B 

1 Bfl B-l 
p--l_iB (53) 2 1 

where B = 1.25[(1 --r$*)/$~*]‘~‘~ and 1 = k,*/k: with 
k,* and k$’ denoting the thermal conductivity of the 
fluid and the solid particle respectively. Equation (53) 
shows that the stagnant thermal conductivity is a func- 
tion of position for a variable porosity bed. 

As proposed by Cheng and Vortmeyer [lo], we now 
assume that the radial thermal dispersion coefficient 
k? is of the form 

k,*/k: = D,Peul (54) 

where Pe = Pr Re, with Pr denoting the Prandtl num- 
ber of the fluid, and Re, = u$,d,/v is the Reynolds 
number based on the mean velocity and the particle 
diameter, and 1 is the mixing length for radial thermal 
dispersion which is given by 

for the inner wall region 

(r: < r* < rf+jd,) 

for the core region 

(r? + Bd, < r* < rz-ad,> 

for the outer wall region 

(r,*-/Id, < r* < rz) 

or 

forl<r<l+o 

for l+w<r<r,-w (55) 

r,-r n 1(-l 0 
forr,-o < r < r, 

where o = fld,/r:. Cheng and Vortmeyer [lo] found 
that with b = 0 (i.e. wall effects on transverse thermal 
dispersion is unimportant), the large temperature 
drops observed in Schroeder et al.3 data [ 1 I] cannot 
be reproduced with the theory. They found that the 
values of n = 1, DT = 0.2 N 0.25 and /I = 2 w 2.5 
match the theory with Schroeder et al.‘s data well. 
Equations (55) show that the mixing length in the wall 
regions varies linearly with the distance from the wall, 
and that the effect of a bounding wall on the radial 
thermal dispersion vanishes at a distance of 2 N 2.5 
particle diameters away from the wall. 

Solution of the radial temperature distribution 
Equations (51)-(55) with u given by equation (43), 

(46) or (48) subject to boundary conditions (49) can 
be obtained by a direct integration. Since the 
expression for the mixing length given by equation 
(55) depends on location, the solution of temperature 

distribution depends on the region under consider- 
ation. Moreover, the solution depends on whether the 
effect of the wall on the radial thermal dispersion 
is felt over part of the bed or the entire bed, i.e. 
(r$- ry)/2 > fid, or (rz- r:)/2 < /Id,. 

(i) For the case of (r$--r,*)/2 > fld, or r, > 2c0+ 1, 
the temperature is given by 

s r dr 
T*(r) = Ty+D 

I r(k$ + DTkf Pr Re,u[(r - 1)/w]“} 

for the inner wall region, 1 < r < 1 +w (56a) 

I 
I 

T*(r) = T*(l+w)+D 
dr 

I +. r(k$ + D,k: Pr Re,u) 

for the core region, 1 + w < r < r. -w (56b) 

T*(r) = T*(r, - 0) 

+D 
dr 

r{k$ + DTk: Pr Re,u[(r, -r)/G’} 

for the outer wall region, r0 --w < r < r0 (56~) 

where 

D = (7-X-T:) 
:’ 

iS 
I+0 dr 

, r{k$ + DTk: Pr Re,u[(r- 1)/w]“} 

s 

rO--w dr 
+ 

I+W r(k$ + DTkf* Pr Re,u) 

+ 
s 

‘0 dr 

I (,~-w,r{kd*+DTk:PrRe,u[(r,-r)lwl”} ’ 

(564 
(ii) For the case of (rz-r,*)/2 < /Id,,, or r0 < 

20+ 1, the wall effect is felt over the entire bed. In 
this case, the temperature distribution is given by 

, 

T*(r) = “‘D i 

dr 

, r{k$+DTkf* Pr Re,u[(r- 1)/w]“} 

for the inner wall region, 1 < r 6 (rO - l)/ 2 (57a) 

r -1 
T*(r) = T* y 

( > 

i 

I 

+D 
dr 

(,,- I),* r{kd* +WF Pr Re,uKro -rY4’) 

for the outer wall region, (r, - I)/2 < r < r0 (57b) 

where 

D = (Tz- T;) 
i 

(ra- I)/2 dr 

r{kd* + D,k: Pr Re,u[(r- 1)/w]“) 

dr + 
~2 r{kd* + D&F Pr Re,u[(r, - r)/ol”} > (57c) 
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The surface heat flux from the inner cylinder is 

=-$ (58) 

which can be rewritten in dimensionless form as 

4,b 
* 

D 

Nut = k:(T,*- T,*) = - k:(T,*- T,*) (59) 

where Nui is the Nusselt number based on the radius 
of the inner cylinder. 

NUMERICAL RESULTS FOR HEAT TRANSFER 

CHARACTERISTICS 

Equations (56)-(59) show that the heat transfer 
characteristics in an annular packed bed depend on the 
values of n, B, D,, d,, ro, kz, k,*, Ti*, T,*, Pr, Re,, C, 
and N,. They also depend on the values of C, and 
N, implicitly through their dependence on the velocity 
profile. Computations for the heat transfer charac- 
teristics were carried out for the 13 experimental runs 
conducted by Yagi and Kunii [ 121. These experiments 
were carried out with air (Pr = 0.7 and k: = 0.027 
W mm ’ Km ‘) flowing through an annular packed bed 
comprised of glass beads (k: = 1.05 W m- ’ Km ‘). 
Other experimental conditions (d,, Re,, T,* and T,*) 
together with the experimentally determined wall heat 
transfer coefficient from the inner cylinder (h,,) and 
temperature difference (At J are listed in Table 1. Also 
listed in the table are the experimentally determined 
values of surface heat flux from the inner cylinder qw,, 
which were computed according to 

qw, = h,,At,. (60) 

Other experiments performed by Yagi and Kunii [ 121 
with y > 0.4 are not listed in Table 1. 

Computations for the heat transfer characteristics 
were carried out based on the three velocity models 
[i.e. Brinkman’s model with variable and constant 
permeability as well as the plug flow model as given 
by equations (44), (46) and (48)]. It is relevant to 
mention that the radial variation of the stagnant ther- 
mal conductivity (due to porosity variation) must be 
taken into consideration even though the constant 
permeability assumption is used in the computations 
of the velocity profiles [i.e. equations (46) and (48)]. 
It was found that if the values of n = 1, p = 2, 
DT = 0.2, C, = 1.4 and N, = 2 are used in the theory, 
the predicted heat transfer characteristics based on 
the three velocity models match with experimental 
data. 

Of the 13 experimental runs listed in Table 1, Yagi 
and Kunii [12] chose to present the temperature dis- 
tribution data only for one case (C-9). Since the exper- 
imental conditions for other temperature data pre- 
sented in Yagi and Kunii’s paper are not reported 
explicitly, simulations of these temperature data can- 
not be performed. A detailed comparison of tem- 
perature distribution between experiments and theory 
(based on the three velocity models) can therefore 
only be made for the case of C-9, which is displayed 
in Fig. 3b. It is shown that the predicted temperature 
distribution based on the Brinkman model with a 
variable permeability (shown as a solid line in the 
figure) predicts a smaller temperature drop near the 
walls than that of the other two velocity models 
(shown as dashed lines), and that the solid line agrees 
the best with experimental data. 

The predicted temperature distribution for the case 
of B-12 (Re, = 32.2 and y = 0.085) is presented in Fig. 
3a. At a low Reynolds number of 32.2 and a small 
value of y, the predicted temperature distributions 
based on the Brinkman model with a constant per- 

b I------ - Vowable Permeabil 
-‘-Plug Flow 

---- Cord. Permeability 

Red:332 , y: 0 464 

P=2,DT=0.2,C,=1.4 

1 o++--JJ---J~ I II 
3 1 2 3 1 2 3 

r r r 

FIG. 3. Comparison of predicted and experimentally determined temperature profiles in an annular packed 
column. 
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meability and the plug flow model are indiscernible in 
the graph. The temperature data presented in Fig. 3a 
is actually for case B-14 with Re, = 40.6 which is 
slightly higher than the simulated data with 
Re, = 32.2. Again, it is shown that the predicted tem- 
perature distribution based on the Brinkman model 
with a variable permeability agrees the best with 
experimental data. 

The predicted temperature distributions based on 
the three velocity models for the case of D-19 
(Re, = 332 and y = 0.4) are presented in Fig. 3c. It is 
shown that at a high value of y = 0.4, the predicted 
temperature distribution near the cooled inner surface 
based on the plug flow model or the Brinkman model 
with constant permeability is substantially higher than 
that of the Brinkman model with a variable per- 
meability. 

A comparison of the predicted and experimentally 
determined Nusselt number based on the inner cyl- 
inder of the annular packed bed as a function of the 
Reynolds number at four values of y is displayed in 
Fig. 4. The predicted Nusselt numbers based on three 
velocity models, are shown to be in good agreement 
with experimental data. At a low value of y (y = 0.051 
for example), the predicted Nusselt numbers based on 
the three velocity models are indiscernible in the 
graph. At higher values of y and Re, (y = 0.464 and 
Re, > loo), the Nusselt number predicted by the plug 
flow model is higher than those of the Brinkman 
model with variable or constant permeability. Thus, 
the shape of the velocity profile has a relatively small 
effect on the Nusselt number at small and moderate 
values of Re, (Re, < 100). It is relevant to note that 
for a given value of y, the slope of the Nui vs Re, curve 
increases from zero as the value of Re, is increased. 

40 &2,D,:0.2, C,=1.4,Pr=0.7 

30 0 y:o.o51 
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FIG. 4. Comparison of predicted and experimentally deter- 

mined Nusselt number in an annular packed column, 

CONCLUDING REMARKS 

The mixing length theory, proposed by Cheng and 
Vortmeyer [IO] for transverse thermal dispersion in a 
packed bed with a bounding wall, is applied to the 
problem of fully-developed, forced convective flow 
through an annular bed. With the values of /? = 2.0 
and D, = 0.2 used in the mixing length theory, the 
predicted heat transfer characteristics based on the 
three velocity models are found in good agreement 
with experimental data. With these values the pre- 
dicted temperature profiles based on the variable per- 
meability model agree the best with experimental data. 
Presumably, if other values of p and D, are used in 
the theory, a closer match between experimental data 
and theory based on the plug flow model and the 
Brinkman model with a constant permeability can be 
achieved. This has not been attempted in view of the 
approximate nature of the theory. The results of the 
present analysis, however, do reinforce the validity of 
the mixing length theory and the Prandtl number 
dependence of the radial thermal dispersion 
coefficient. 

One of the assumptions made in the present analysis 
is that the inertia effect (i.e. the velocity square term 
in the momentum equation) is negligible. For high- 
speed forced convective flow in a packed bed where 
the nonlinear term in the momentum equation must 
be included, a closed form solution for the velocity 
distribution may not be possible and numerical 
solution is preferred. This aspect of the problem is 
presently under investigation. 
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ECOULEMENT DE CONVECTION FORCEE ETABLI A TRAVERS UN LIT FIXE 
DE SPHERES ANNULAIRE AVEC EFFET DE PAR01 

RCsum&-On analyse l’tcoulement force convectif Btabli a travers un lit fixe de spheres entre deux cylindres 
concentriques maintenus a differentes temperatures. Les variations radiales de la porosite et de la per- 
meabilitt dans le lit pres des parois, connues comme effets de paroi, sont approchees par des fonctions 
exponentielles. Le modele de Brinkman avec permeabilitir variable est utilist. Une solution analytique bas&e 
sur la mithode des developpements asymptotiques est obtenue pour la distribution de vitesse. On montre 
que des survitesses apparaissent pres des cylindres, avec une importance ltgerement plus grande pres du 
cylindre interieur. A cause de la variation non uniforme de porositb pres des parois, la conductivitt 
thermique fixe du lit varie aussi dans la direction radiale. Une theorie de longueur de melange, propo& 
recemment par Cheng et Vortmeyer pour la dispersion thermique est utilide pour obtenir la distribution 
radiale de temperature et le nombre de Nusselt du lit annulaire. Des calculs thermiques sont conduits 
sur trois modeles dynamiques, modele de Brinkman avec permeabilite constante et variable et modele 
d’ecoulement piston. On trouve qu’avec la theorie de la longueur de melange, les predictions des carac- 
ttristiques thermiques bastes sur les trois modeles de vitesse sont en bon accord avec les don&es 
exptrimentales. Les profils de temperature calcules avec le modtle de Brinkman a permeabilite variable 

s’accordent mieux avec les mesures de temperature. 

VOLL AUSGEBILDETE ERZWUNGENE KONVEKTIONSSTROMUNG DURCH EIN 
RINGFt)RMIGES KUGELSCHUTTBETT MIT RANDEFFEKTEN 

Zusammenfassung-Es wird eine Untersuchung fur eine voll ausgebildete erzwungene Konvektions- 
striimung durch ein ringformiges Kugelschtittbett zwischen zwei konzentrischen Zylindern unterschied- 
lither Temperatur vorgestellt. Die Anderungen von Porositit und Permeabilitat in radialer Richtung nahe 
der Wand, als Wandeffekte bekannt, werden durch Exponentialfunktionen angenlhert. Als Impulsglei- 
chung wird das Brinkman-Model1 mit unterschiedlicher Permeabilitlt verwendet. Fiir die Ge- 
schwindigkeitsverteilung erhalt man eine analytische Losung, die auf der Methode der asymptotischen 
Anpassung basiert. Es zeigen sich fjbergeschwindigkeiten in der Zone variabler Perrneabilitat in Wandnahe 
des inneren und lul3eren Zylinders. Die Ubergeschwindigkeit ist am inneren Zylinder mit dem kleineren 
Radius etwas hoher. Wegen der ungleichmal3igen Porositltslnderung in Wandnlhe Bndert sich somit die 
Warmeleitfahigkeit des Betts such in radialer Richtung. Es wird eine kiirzlich von Cheng und Vortmeyer 
vorgeschlagene Mischungslangentheorie fiir die thermische Querausbreitung verwendet, urn die radiale 
Temperaturverteilung und die Nusselt-Zahl fur das ringfiirmige Bett zu ermitteln. Mit drei Ge- 
schwindigkeitsmodellen (dem Brinkman-Model1 mit variablen und konstanten Permeabilitlten und dem 
Pfropfenstromungsmodell), wurden Berechnungen der Wlrmeiibertragungscharakteristiken durchgefiihrt. 
Mit der Mischungslangentheorie ergab sich eine gute Ubereinstimmung der theoretischen Vorhersagen der 
Wlrmetibergangscharakteristiken, basierend auf den drei Geschwindigkeitsmodellen. mit den Expe- 
rimenten. Die vorhergesagten Temperaturprofile, die mit dem Brinkman-Model1 mit variabler Permeabilitlt 

ermittelt wurden, stimmen am besten mit den Temperaturmessungen iiberein. 
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nOJIHOCTbIO PA3BklTOE BbIHYmAEHHO-KOHBEKTMBHOE TE’IEHZIE 9EPE3 
KOJIbqEBOft, 3AIlOJIHEHHbIfi C@EPWiECKBMW ‘4ACTHqAMM CJIOtt, C YrIETOM 

IIPMCTEHHbIX 3cD@EKTOB 

AnnoTawm-AHam3"pyeTcn non"ocTbX3 pa3B"Toe Bbl"ymewio-Ko"BeKTHB"oe TeqeHHe uepe3 sanon- 

HeHHbIfi C~pHYeCKHM" YaCTliUaM" CnO8 MerAy KOHUeHTpH'WCKHMH UWIHHApaM",HMeIOI4HMH pa3HbIe 

TeMIlepaTypbI.&AHaAbHbIe H3MeHeHHR IlOpOJHOCT" H ITpOHHUaeMOCTH B CnOe n6nnw CTeHOK,"3BeCT- 

Hble KaK ApHCTeHHble 3@#k?.KTbl, aIInpOKC"MHpOBaJniCb C I'IOMOIULH) 3KCIIOHeHUHanbHbIX +yHKUHfi. B 

KaqeCTBe ypaBHe"H,, KO,,HYeCTBa ABWKeHHR HCAOnb30BBnaCb MOAenb 6pH"KMaHa C H3MeHmOLUefiCK 

IIpOHHI‘aeMOCTbH,. nOnyveIi0 aHaJIHTH'ieCKOe peUIeH"e, OCHOBaHHOe Ha MeTOAe CpaLUHBaeMbIX BCHMII- 

TOTHS~CKHX pa3no*eHafi,no3Bonm0ollteepaccwiTb~BaTb none cKop0cTefi Bcnoe.IloKa3aHo.YTo B cnoec 
llepeMeHHOfi "pOHWaeMOCrbi0 B6nH3H BHyTpeHHerO W HapyKCHOrO UWIHHApOB CKOpOCTb BbIUIe,'JeM B 

OCTanbHOM odaehfe CnOR. Benswma JTOrO IlpeBbIIlIeHHK CKOPOCTH HeCKOJlbKO 6onbrue y BHyTpeHHerO 

UHJIHHApaC MeHblIlWM paAHyCOM.TeMOITpOBOAHOCTb CnOK TaK)Ke MeHKeTCK B paAHaJIbHOM Hanpaane- 

HRH H3-3a HeOAHOpOAHOrO H3MeHeHHR IIOp03"OCT" OKOnO CTeHOK. Teopm QnHHbI IlyTH CMeuIeHHn, 
npeanonceesar ZIeHroM H $opTMeilepoM Ann nonepeqHofi Tennoeoii Aacnepc"", wcnonb3yeTcn Qnn 

HaxomAwHn paAHanb"or0 pacnpeAenewinTehfnepaTyp w v"cna HyccenbTa Konbueeoro cnox XapaKTe- 

pHCTWRH TennonepeHoca paCCqHTaHbI Ha OCHOBe TpexcK0pOCr~b1~ Moneneii, T.e.MoAenH EpE,HKMaHa c 

IlepeMeHHbIMB H IlOCTORHHbIMH IIpOHHUaeMOCTKM&l H MOAen" IlOplUHeBOrO Te'IeHHfI.O6Hapyxe"o,uTO 

IlpH HCIlOnb30Ba"HU TeOpHB ITyTH AJIHHbI CMeUIeHHK TeOpeTWIeCK"e paCYeTb1 XapaKTepHCT"K Tennoo6- 
MeHa, 0cHoBamiue Ha T~~X~KOPOCTHMX hfonennx, xopoluo cornacymcr c memumwn smnepwhteti- 
TanbHbIMH Aa"HbIMLi.~pO~WlH TeMIIepaTyp,paCC'iHTaHHbIe II0 MOAenH 6p"HKMaHa C Li3MeHKlOIAei?Cn 


